If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+50y+80=0
a = 5; b = 50; c = +80;
Δ = b2-4ac
Δ = 502-4·5·80
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-30}{2*5}=\frac{-80}{10} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+30}{2*5}=\frac{-20}{10} =-2 $
| x/44=12 | | Y=x-4;(-2,3) | | 5(5x+8)=-11+8x | | Y=3x+6;(4,7) | | 1/8(16y+8)-17=1/4(8y-6) | | -4=-9t^2 | | 3u+17=53 | | 12b^2=-10 | | 12t^2-148t+48=0 | | -4m+1=-5m-7(m-7) | | 3=5/2(3x-2) | | 3-|-8m|+8=80 | | 2x+5=3x+2=3x-18 | | 48.94-15.237x-0.053x^2=0 | | 10.99=2×3.14×r | | 22-4b=14 | | (n^2)-5n+4=0 | | 12s^2-138s+66=0 | | 2x+5+3x=2=3x+18 | | 7(1+8m)=-6+7 | | 4(d+3)=2d-8 | | (7.6-x)(6.8-x)=0 | | 10234x-22234=0987765x+2345678 | | 5x-19+3x+15=180 | | 5/7(m+73)=31/3 | | 5u^2-46u+9=0 | | (6x-1)=(10x+5) | | 2y+10-3y=0 | | x2-27x+180=0 | | 5y(3)=230 | | (10x+5)=(6x-1) | | 2b+4=10+2.5b |